ON THE REDUCIBILITY MODULO *p* OF SIMPLE MODULES

PEDRO MANUEL DOMINGUEZ WADE

Department of Mathematics Matanzas University Cuba e-mail: pedroalgebralineal@gmail.com

Abstract

Let (F; R; k) be a splitting *p*-modular system for the finite group *G* and let $P \in Syl_p(G)$ fixed. In this paper, we show that a simple kG-module *S* is the reduction modulo *p* of an *RG*-lattice, if and only if *S* is isomorphic to a direct summand of the induced module from *P* to *G*.

1. Introduction

Let G be a finite group, p be a prime divisor of |G|, and R be a complete discrete valuation ring with quotient field F of characteristic 0. We assume that the residue field k = R/J(R) has characteristic p, where J(R) denotes the Jacobson radical of R. With this assumption, we refer to the triple (F; R; k) as a splitting p-modular system.

Received October 16, 2013

© 2013 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: Primary 20C20; Secondary 20C34.

Keywords and phrases: reduction modulo p, G-weight.

Recall that the Brauer reduction of a modulo for a natural prime p is defined as follows. If V is an FG-module, then there exists a full RG-lattice $L \subseteq V$. The kG-module L/J(R)L = U is called a reduction of V modulo p. Moreover, in such case, we say also that U is the reduction modulo p of the RG-lattice L.

By Fong-Swan theorem (see [9]), we know that if G is a p-solvable group, then every simple kG-module is the reduction modulo p of an RG-lattice. In our case, firstly, we will study the following problem:

When the simple kG-module S is the reduction modulo p of an RG-lattice L?

2. Preliminary

Let Q be a p-subgroup of the finite group G. Assume that n = |G : Q|and let $D^+ = \{x_1, ..., x_n\}$ be a full set of representatives in G of the cosets in G/Q. Then $Ind_Q^G(k)$ is isomorphic to kGQ^+ as left kG-module, where $Q^+ = \{\sum_{x \in D^+} \alpha x \in kG\}$.

Set $X = \{x_i - x_i y, y \in Q\}$. We denote the left ideal generated by X in kG by $I_Q(G)$. We claim that

$$rank_k(I_Q(G)) = |G : Q|(|Q| - 1)$$

= $|G : P|\frac{|P|}{|Q|}(|Q| - 1).$

Thus, we have

$$kG/I_Q(G) \cong kGQ^+,$$
(2.1)

as k-modules. Now, assume that Q < Q', where Q' is also a p-subgroup of G. Set $X_Q^{Q'} = \{x_i - x_j, x_j = yxy', y \in Q \text{ and } y' \in Q'\}$. Then $kG/I_Q(G)$ contains a left ideal isomorphic to the left ideal generated by $X_Q^{Q'}$. We denote this ideal by $I_Q^{Q'}$. Observe that $rank_k(I_Q^{Q'}) = |G : P| \frac{|P|}{|Q'|} (\frac{|Q'|}{|Q|}|Q|-1)$. Let us write C_Q by $kG/I_Q(G)$. Thus, we have

$$C_Q/I_Q^{Q'} \cong k G Q'^+. \tag{2.2}$$

Remark 2.1. Let G be a finite group with splitting field k of characteristic p, and let S be a simple kG-module. Then P_S denotes the projective cover of S.

Lemma 2.2. Let G be a finite group with splitting field k of characteristic p, and let S be a simple kG-module. Set $P \in Syl_p(G)$ fixed. Then $P_S^{\dim S}/P_S^{\dim S}I_P(G)$ is a projective kG-module if and only if P_S is a blocks of defect zero.

Proof. Let J(G) be the Jacobson radical of kG. We to check two cases:

Case I. $J(G) \subseteq I_P(G)$.

Applying the Lemma 2.2, the assertion follows. Conversely, by assumption and applying again the Lemma 2.2, the result follows:

Case II. $J(G) \not\subseteq I_P(G)$.

Assume that $P_S^{\dim S}/P_S^{\dim S}I_P(G) \cong P_S^l$ is a projective kG-module, where l is the multiplicity of P_S as direct summand of $P_S^{\dim S}/P_S^{\dim S}I_P(G)$. We show that P_S is a simple kG-module. Since $I_P(G)$ is left ideal of kG, we may write

$$I_P(G) = P_{S_1}^{\dim S_1} I_P(G) \oplus \dots \oplus P_{S_r}^{\dim S_r} I_P(G).$$

$$(2.3)$$

We claim that $P_S^{\dim S}I_P(G) \cong P_{S_j}^{\dim S_j}I_P(G)$ for some j such that $1 < j \le r$. Since $P_S^lI_P(G) = 0$, we deduce that $P_S^{\dim S}I_P(G)$ is a projective kG-module, where the multiplicity of P_S is equal to $\dim(S) - l$, i.e., we have

$$P_S^{\dim S}I_P(G) = P_S^{\dim(S)-l}.$$

Therefore, we may assert that $P_S I_P(G)$ is a right indecomposable $I_P(G)$ -module such that

$$(P_S I_P(G))^{\dim S} = P_S^{\dim(S)-l}.$$
 (2.4)

We assume that $\alpha = \dim(P_S I_P(G))$ and $\beta = \dim(P_S)$. According to (2.4), we way write the following equality:

$$\alpha \dim S = \beta(\dim(S) - l). \tag{2.5}$$

From (2.5), it follows that

$$\frac{\alpha}{\dim(S) - l} = \frac{\beta}{\dim S}.$$
(2.6)

We now claim that the equality (2.6) is true if and only if $\frac{\alpha}{\dim(S) - l} =$

 $\frac{\beta}{\dim S} = 1$. Thus, the following holds dim $S = \dim P_S$, which is what we need to prove.

Conversely, by assumption, it follows that

$$P_S^{\dim S} I_P(G) = (P_S I_P(G))^{\dim S},$$
 (2.7)

where $\dim(P_S I_P(G)) = \dim(S) - l$ with $l = \dim S_{p'}$, being $\dim S_{p'}$ the p'-part of dim S. Thus, we deduce that $P_S^{\dim S} I_P(G) = P_S^{\dim(S)-l}$. So we are done.

3. Main Results

Proposition 3.3. Let G be a finite group with splitting field k of characteristic p, and let $P \in Syl_p(G)$ fixed. Then every direct summand of kGP^+ has a radical vertex.

Proof. Let $N_G(P)$ be the normalizer of P. According to the Green correspondence, all direct summand of $kGP^+ \cong Ind_P^{N_G(P)}Ind_{N_G(P)}^G(k)$ has vertex P or a vertex in $P \bigcap P^g$, $g \in G - N_G(P)$. Assume that U is an indecomposable kG-module with vertex $Q \leq P$, being U a direct summand of kGP^+ . We to check two cases:

• Case 1. Q = 1 or Q = P.

The assertion results trivially by assumption.

• Case 2. Q < P.

In this case, $Q \leq P \bigcap P^g$. Let $N_P(Q)$ be the normalizer of Q in the Sylow *p*-subgroup *P*. Since $P \bigcap N_G(Q) = N_P(Q)$ and $P^g \bigcap N_G(Q) = N_P^g(Q)$ are Sylow *p*-subgroup of $N_G(Q)$, we deduce that $g \in N_G(Q) - N_P(Q)$. We now shows that $N_P(Q)$ is not a normal subgroup of $N_G(Q)$. Let us write \mathbb{P} for $N_P(Q)$. Conversely, we assume that \mathbb{P} is a normal subgroup of $N_G(Q)$. Then, we have

$$N_G(Q) \le N_G(\mathbb{P}). \tag{3.8}$$

We show that $N_G(\mathbb{P}) \leq N_G(Q)$.

We assume that there is an element $g \in N_G(\mathbb{P})$ such that $Q^g \leq P$ with $Q^g \neq Q$. In such case, we may check that Q^g is a normal subgroup of \mathbb{P} , which is immediate. Therefore, we have

$$\mathbb{P} = N_P(Q^g). \tag{3.9}$$

From (3.9), it follows that $Q = Q^g$, which is a contradiction. Thus, we obtain

$$N_G(\mathbb{P}) \le N_G(Q). \tag{3.10}$$

Combining (3.8) and (3.10), it follows that $N_G(\mathbb{P}) = N_G(Q)$. Now, since $Q \leq \mathbb{P}$, we deduce that $\mathbb{P} = Q$. Hence Q is a radical subgroup of G, which is a vertex of the trivial $N_G(Q)$ -module, contradicting Q < P. Since $Q = \mathbb{P} \bigcap \mathbb{P}^g$ is the intersection of two Sylow p-subgroups of $N_G(Q)$, we obtain $Q \supseteq O_p(N_G(Q))$. But on the other hand, Q is a normal p-subgroup of $N_G(Q)$, and so is contained in $O_p(N_G(Q))$. Thus, we have equality.

Definition 3.4. Let

$$kGP^+ = \bigoplus U,$$

where U is an indecomposable kG-module. If U is a simple kG-module or an indecomposable non-projective kG-module with projective cover P_S , then U is called G-weight.

Theorem 3.5. Let G be a finite group with splitting field k of characteristic p. Then, the number of non-isomorphic G-weights equals the number of conjugacy classes of p-regular elements of G.

Proof. Since $I_P(G)$ is left ideal of kG, we may write

$$kGP^+ = \bigoplus_{j=1}^r M_j^Q, \qquad (3.11)$$

where r is the number of conjugacy classes of p-regular elements of G, Q runs over a set of representatives for the conjugacy classes of radical p-subgroups of G, and the M_j^Q are left kG-modules such that

$$M_j^Q \cong P_S^{\dim S} / P_S^{\dim S} I_P(G), \qquad (3.12)$$

for some simple kG-module S. Observe that each left kG-module M_j^Q can be decomposed as a direct sum of indecomposable kG-modules, i.e., we may write

$$M_j^Q = \bigoplus_{\gamma=1}^{\mu} U_{\gamma}, \qquad (3.13)$$

where the U_{γ} are indecomposable kG-modules.

We claim that $M_j^Q/Rad(M_j^Q) \cong \bigoplus S^{\mu}$, where S is a simple kG-module, i.e., we have $U_1/Rad(U_1) \cong \cdots \cong U_{\mu}/Rad(U_{\mu}) \cong S$. We now will prove that in the decomposition (3.13), there is a unique direct summand U_{γ} , up to isomorphism, which is a G-weight. We to check two cases:

(1) $P \in Syl_p(G)$ and P is a normal subgroup of G.

In such case, P is the unique maximal normal p-subgroup of G. Now, since P acts trivially on every simple kG-module S, we deduce that $J(G) = I_P(G)$. Hence, we have

$$M_j^Q = S_j^{\dim S_j}, \quad j \in \{1, ..., r\},$$

where S_j is a simple kG-module.

(2) $P \in Syl_p(G)$ and P is not a normal subgroup of G.

Suppose that $M_j^Q = U^l$, being U an indecomposable projective kG-module of multiplicity l. In such case, the result follows by Lemma 2.2.

Therefore, assume that U_{γ} is direct summand in (3.13), which is an indecomposable non-projective *kG*-module. Let us now show that P_S is the projective cover of U_{γ} .

Since $P_S/Rad(P_S) \cong U_{\gamma}/Rad(U_{\gamma}) \cong S$, we deduce that there is an epimorphism $P_S \to U_{\gamma}$, which necessarily is essential by Nakayama's lemma.

We now show that U_{γ} is unique. Suppose that U_{γ} and $U_{\gamma'}$ are two *G*-weights in the decomposition (3.13). Since P_S is projective cover of U_{γ} and $U_{\gamma'}$, we assert that there are two essential epimorphisms θ_1 : $P_S \rightarrow U_{\gamma}$ and $\theta_2 : P_S \rightarrow U_{\gamma'}$. We define the homomorphism $f : U_{\gamma} \rightarrow U_{\gamma'}$ given by $f(\theta_1(a)) = \theta_2(a), a \in P_S$. Applying again Nakayama's lemma, we deduce that f is an isomorphism. Therefore, the following holds $U_{\gamma} \cong U_{\gamma'}$, which is what we need to prove.

Let G be a finite group and let $\mathbb{C}^{p-reg(G)}$ be the vector space of class functions on the *p*-regular elements of G. Then, we may define a Hermitian bilinear form on this space by

$$\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_{p-regular \ g \in G} \overline{\phi(g)} \psi(g).$$

Now, if P and U are finite-dimensional kG-modules with P projective, then

$$\dim Hom_{kG}(P, U) = \langle \phi_P, \phi_U \rangle. \tag{3.14}$$

Let G be a finite group and k be a splitting field for G of characteristic p. Let S_1, \ldots, S_r be a complete list of non-isomorphic simple kG-modules. Then, the Brauer characters $\phi_{S_1}, \ldots, \phi_{S_r}$ of the simple modules form a basis for $\mathbb{C}^{p-reg(G)}$.

Lemma 3.6. Let G be a finite group and k be a splitting field for G. Let $U_1, ..., U_r$ be a complete list of non-isomorphic G-weights, with projective covers $P_{S_1}, ..., P_{S_r}$. Then, the Brauer characters $\phi_{U_1}, ..., \phi_{U_r}$ of the G-weights form a basis in the space $\mathbb{C}^{p-reg(G)}$ of class functions on the p-regular elements of G.

Proof. Everything follows from the formula:

$$\tau = \langle \phi_{P_{S_i}}, \phi_{U_j} \rangle = \begin{cases} \tau = 0, & \text{if } i \neq j; \\ \tau = 1, & \text{if } i = j \text{ and } U_j \cong S_i; \\ \tau > 1, & \text{if } i = j \text{ and } U_j \not\equiv S_i, \end{cases}$$

and the fact that the number of non-isomorphic *G*-weights modules equals the number of *p*-regular conjugacy classes of *G*. Thus if $\sum_{i=1}^{r} \lambda_i \phi_{U_i} = 0$, we have $\langle \phi_{P_{S_i}}, \phi_{U_i} \rangle \lambda_i = 0$, so $\lambda_i = 0$, which shows that the are independent, and hence form a basis.

Theorem 3.7. Let (F; R; k) be a splitting p-modular system for the finite group G. The simple kG-module S is the reduction modulo p of an RG-lattice if and only if S is a G-weight.

Proof. Let S be a simple kG-module with projective cover P_S , and let U_i be a G-weight such that $U_i/Rad(U_i) \cong S$. Assume that S is the reduction modulo p of an RG-lattice. According to the Lemma 3.6, we may write

$$\sum_{i=1}^{r} \lambda_i \phi_{U_i} = \phi_S. \tag{3.15}$$

From (3.15), we may write

$$\langle \phi_S, \phi_{U_i} \rangle \lambda_i = \langle \phi_S, \phi_S \rangle. \tag{3.16}$$

Since S and U_i are liftable to one RG-lattice, and S is the radical quotient of U_i , it follows that $\langle \phi_S, \phi_{U_i} \rangle = \langle \phi_S, \phi_S \rangle$, so $\lambda_i = 1$.

Conversely, since kGP^+ is the reduction modulo p of the RG-lattice RGP^+ the result follows.

References

- J. L. Alperin, Weight for finite groups, Proc. J. Pure and Appl. Algebra 8 (1976), 235-241.
- [2] J. L. Alperin and P. Fong, Weights for symmetric and general linear groups, Journal of Algebra 131 (1990), 2-22.
- [3] H. I. Blau and G. O. Miohlev, Modular representation theory of finite groups with T. I. Sylow p-subgroups, Trans. Amer. Math. Soc. 319 (1990), 417-468.
- [4] R. Brauer and C. J. Nesbitt, On the modular characters of groups, Ann. Math. 42 (1941), 556-590.
- [5] P. Brockhaus, On the radical of a group algebra, J. Algebra 95 (1985), 454-472.
- [6] A. Jianbel and C. Eaton, The p-local rank of a block, J. Group Theory 3 (2000), 369-380.
- [7] A. Laradji, On lifts of irreducible 2-Brauer characters of solvable groups, Osaka Journal of Mathematics 39 (2002), 267-274.
- [8] O. Manz and T. Wolf, Representations of Solvable Groups, Cambridge University Press, New York, 1993.
- [9] G. Navarro, Characters and Blocks of Finite Groups, Cambridge University Press, New York, 1998.

- [10] G. Navarro, A new character correspondence in groups of odd order, Journal of Algebra 268 (2003), 8-21.
- [11] G. Navarro, Vertices for characters of p-solvable groups, Transactions of the American Mathematical Society 354 (2002), 2759-2773.
- [12] G. Navarro, Weights, vertices and a correspondence of characters in groups of odd order, Math. Zietschrift 212 (1993), 535-544.
- [13] T. Okuyama, Module correspondence in finite groups, Hokkaido Math. J. 10 (1981), 299-318.
- [14] D. A. R. Wallage, On the radical of a group algebra, Proc. Am. Math. Soc. 12 (1961), 133-137.

11